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1. The intensif icat ion of the heat emission of a so l id  under invariant 

external conditions is usually attained by subdivision, by increasing the sur- 

face without increasing its weight, i.e. , of the volume, 

increase of the body surface causes a growth of i t s  in tegra l  cr i ter ion of the 

Such an isochoric 

form: 

It w i l l  be shown i n  the present paper t ha t  the growth of the thermal flow 

velocity: 

f o r  an isochoric increase i n  the surface 

decrease i n  the density of the thermal flow speed: 

S , occurs simultaneously with a 

on the body surface. 

(specif ic  thermal. flow) follows direct ly  from the decrease i n  the mean value 

of the temperature gradient on the body surface (Oe), as the Es kind of 

c r i t e r ion  increases or  from the decrease i n  the mean temperature of the sur- 

face e , (~)  together with the increase i n  the Es simplex. I n  other words: 

Such a decrease i n  the density of the thermal flow speed 

(4) 2% (0 a ES 

2. It was indicated i n  D], tha t  the maximum temperature @,(T) of a 

body is  higher, the higher the 

remaining conditions. 

Es c r i t e r ion  of the body under the s a w  
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This law 

borruwed from 

is i l lus t ra ted  well  in the graph of the work cited, which we 

[3J. The recent experinents and computations of Veinik p ,2 ]  

confirmed this  f a c t  conclusively. 

But if em(-c,Es) increases but  8 (7,Es) decreases as Es  increases, S 
then it can be stated tha t  the difference: 

( 5 )  A@ = Bm(.c,Es) - es(T,Es) 
increases along with the Es cri terion. 

A warmest  and a coldest point ex is t  on the body surface a t  each moment 

It is completely possible tha t  such points with extremum temperatures T . 
are several. 

with a minimum temperature - be joined by a l i ne  lying en t i re ly  on the surface, 

then, clearly, a t  l e a s t  one point on t h i s  l i n e  w i l l  be a t  the temperature 

which is exactly equal t o  the average surface temperature 

t i m e  T .  

If two points of the surface - one with a maximum and the other 

e,(z) a t  a given 

Let us jo in  the warmes t  point of the body, which has the em(z) temper- 

ature, t o  t ha t  surface point P(gS) with a temperature equal t o  the average 

surface temperature e,(z) , by a segment of length 2 . Understandably, a 

surface point close t o  P(gS) 
somewhat lower than @,(T) . 

can be taken where the temperature would be 

Let us c a l l  the rat io:  

the average value of the temperature gradient on t h i s  segment. 

the theorem of the mean, a point P(?t,,) 

the absolute value of IV@(r’ 7) I exactly equals IVQ 1, : av’ 

According t o  

must e x i s t  on this segment, where 

(7) 
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It w a s  shown e a r l i e r  [8] tha t ,  for  a k -dimensional body: 

and, consequently, the average value of the temperature gradient on the body 

surface (Ve), 

sui table  choice of the Es 

deformation, f o r  the same nottoo-small B i  and Fo , and therefore, l e s s  

than 

can be made l e s s  than an$ quantity assigned beforehand by a 

criterion, i.e., by a suitable isochoric body 

IveI, , which increases along with Es . 
The reservation re la t ive  t o  suff ic ient ly  large magnitudes of the B i  

and Fo c r i t e r i a  is completely natural. If the in tens i ty  of the heat 

exchange is verg small, which is characterized by small values of the B i  

cr i ter ion,  then the temperature f ie ld  should be considered prac t ica l ly  homog- 

eneous and i ts  gradients will generally be very small. If we consider the 

heat emission process a t  its very beginning, then the whole temperature f i e l d  

is  s l igh t ly  different from the or iginal  temperature dis t r ibut ion which is 

characterized by the absence of heat flow and, consequently, by the absence 

of temperature differences. 

Therefore, it can be s ta ted that, f o r  not too small B i  and Fo values 

i n  bodies of complex enough shape, which is  characterized by a high Es c r i t -  

erion, points ex i s t  within the body a t  which the absolute value of the temper- 

ature gradient is la rger  than the average value of the temperature gradient 

on the body surface: 

( 9 )  

This statement expresses the theorem on the maximum temperature gradient, 

Hence, there are points on bodies of complex configuration, where the specific 

thermal flow is larger  than on the bo* surface, on the average. 

But a t  the body telnperature center, the gradient of a point where the 



4. 

temperature is a maximum must equal zero: 

(10) v€J(~m,T)  = 0 

Because of the above-mentioned theorem, the value of the temperature 

gradient on certain l i n e s  issuing from the center is  higher than on the sur- 

face, on the average. Consequently, the absolute value of the temperature 

gradient, on l i nes  which join the temperature center of a body of complex 

shape t o  those points of the surface where the temperature equals the average 

surface temperature a t  a given time e,(z) , increases from zero t o  a certain 

maximum as the center moms toward the surface and, furthermore, decreases t o  

the V0(gS,z) The curve, sharing the variation 

of the temperature as a function of the distance from the body center, must 

value on the body surface. 

have an inf1e:ction point on such a line.  

3.  The location of the point  a t  which the absolute value of the temper- 

ature gradient is a maximum is determined from the system of equations: 

v e K = o  ave 

f o r  a three dimensional body and from the equations: 

ae a2e ae a2e 
ax am as ag2 
- - * - - P o  

for  a two-dbnsional.  

The spec i f ic  heat flow has its highest value a t  t h i s  point  of the body. 

As the example ci ted below shows, t h i s  point moves, as the 

decreases, t o  the body boundary and w i l l  not, i n  general, be found within or  

on the body surface fo r  small 3i values. In other words, the thermal flow 

q = hlVt) 

is l e f t  behind. 

B i  c r i t e r ion  

increases monotonically, for  small B i  , as the center of the body 

The body projections are cooled more rapidly f o r  large Bi 
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than are the fundamental body mass, the temperature differences within the 

limits of these projections are insignificant and a cer ta in  pa r t  of the heat 

moves from the bas ic  body mass t o  these projections because of the presence 

of the temperature differences between the basic  body mass and the projection 

mass. 

Let us clarify the location of the point  through which the heat supply 

t o  the body projections occurs. These points determine, simultaneously, just 

what p a r t  of the body should be considered basic  and what p a r t  as projection. 

The motion of heat within a body is accomplished along thermal current 

lines which are orthogonal t o  the f i e ld  isotherms. Since we consider a two- 

dimensional body as an example, then it is expedient f o r  the l a t e r  investig- 

ation, t o  carry out the plane problem. The d i f f e ren t i a l  equation of the 

thermal current l i n e  is: 

It is obtained from the orthogonality condition of the isotherm and the thermal. 

current l i ne .  The length of a thermal current l i n e  element is: 

Let us calculate the temperature drop along such a l i ne .  In connection 

with (4) , we obtain a f t e r  certain transformations: 

This result is  natural because the highest temperature drop occurs along 

the current line and 

(16) ae - = ]vel as 

Let  us determine the derivative of the gradient along a length of the . 
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current l i n e  through the formula: 

Using (lb), we w i l l  have: 

Therefore, a t  points where the thermal flaw is  a maximum, the condition 

holds : 

(19) a2e ae ae a2e ae - -  + 2 - - - + -  ax2 a2e ( ax a ~ y  ax ay * 2 ( 4  = O  

4. It was indicated above that  fo r  low values of the Fo cr i ter ion,  

which corresponds t o  the start of the process, i . e . ,  t o  low values of the 

t h e ,  there are  no large temperature gradients within the body and the ther- 

mal flow increases monotonically w i t h  withdrawal from the body center. 

Consequently, the theorem on the m a x i m u m  temperature gradient can appear 

t o  be incorrect i n  the i r regular  

the regular region stage. 

e n t i a l l y  in the regular region stage: 

(20) 

where z0 is  the moment the regular region starts, m is  the cooling ra te .  

As is  seen from (20), the isotherm shape i n  the regular region stage is  

region stage and t o  be completely true i n  

The temperature of each body point var ies  expon- 

~ ( F , T )  = e ( ? , ~ ~ )  exp[-m(T - a>] 

invariant; the temperature of each isotherm decreases exponentially. The 

geometry of the temperature f i e ld  i n  the regular region is independent of 

the time and only the geometric assumption, correct a t  the start of t h i s  

stage 

we will consider the temperature f i e l d  a t  the start of the regular region 

stage, when z = T~ . 

(T = z ) , is correct i n  the r e s t  of the time (T >z ) ; consequently, 
0 0 
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As the object t o  which we apply our theory should be chosen a body from 

which a body with various shape c r i te r ion  values can be obtained by a vari- 

a t ion of the dimensions. It is most convenient t o  se lec t  a rectangular pro- 

f i l e  as such a body. Prof i les  with Es cr i te r ion  values from 4.00 t o  m 

can be obtained by varying the r a t i o  of the sides of the rectangle. 

The temperature of an i n f in i t e ly  long rectangular prism a t  t i m e  z i n  

the regular region stage is  given by the dependence: 

where 

p1 and R2 are half the sides of the rectangle, p a r a l l e l  t o  the Ox and 

Oy coordinate axes, 5 > R 2  ; ~1 and k2 are the least roots of the 

character is t ic  equations: 

T~ , as was indicated above, is the moment the regular region starts; 

(n = 1,2) 
a 

(22) c L t a n C L u p n  

8 is  the tenperatwe of the prism center a t  the start of the regular region om 
(23) 

The temperature of the medium is taken t o  be constant and equal t o  zero. 

Let us clarify the location of the maximum tenperatme gradient depend- 

i n g  on the B% = $%T criterion. 

the maximum gradient i n  correspondence with (12) and (211, the system of 

In order t o  determine the point of 

equations obtained is: 

(24) 

from which are found the coordinates of the point of the max. lV0 l  : 
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, or, taking (22) in to  account, these expressions can be transformed into: 

For a square, f o r  example, 5 P R2 = R , x p2 = p and 

tha t  is, the point on the square where the thermal f l a w  is  a maximum is 

cer ta inly on its diagonal. The character is t ic  number CL f o r  B i  = 00 is 
n and T 

the max. lvel point is a t  the middle of the segment joining the center t o  

a vertex of the square. For B i  P : 
( 29) q = ?  
that  is, the greatest  heat f l a w  is  observed a t  the vertex of the square. 

Evidently, f o r  x < , when p < , the point  w i t h  max. IVe I will not, 

generally, e x i s t  i n  the square and the temperature gradient on each thermal 

aR 

current l i n e  w i l l  increase monotonically from zero a t  the center of the square 

t o  a corresponding magnitude on the boundary. 

Below is  given a table  of values of the { = 7 coordinates depending 
aR on the B i  = ')L quantity. Table 1 

B i  511 B i  f 5 Y  

0.8 0.994 20.0 0.526 
1.5 0.796 40.0 0.513 
3.0 0.659 80.0 0.506 

Point of the max. 1001 i n  the square 
This displacement of the 

heat f l a w  from the body 

boundary t o  i t s  center as 

0.7854 1.000 10.0 0.551 

6.0 0.583 00 0.500 
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the B% cr i ter ion 

f o r  the Es = 4.24 

1.11 
1.41 
2.83 
5.66 
10.6 

increases is i l lus t ra ted  well  i n  table 2 which we composed 

(5 = 2R2) 

Point of max. lVel f o r  the E s  = 4.24 rectangle 

rectangle according t o  (25). 

Table 2 

f z z 
1.00 0.726 21.2 0.720 0.323 
0.939 0.650 42.4 0.712 0.309 
0.824 0.493 70.7 0.709 0.303 
0.766 0.399 OD 0.705 0.295 
0.735 0.352 

R, 
If E s = ~  = 00 and we have, instead of a rectangle, an 

unlimited s t r i p  then the temperature f i e l d  is  one-dimensional. and the high- 

e s t  value of the heat flow f o r  a l l  B i  is  attained a t  the '2 = + 1 bound- - 
a r i e s  of the s t r i p .  

5. According t o  the meaning of the theorem on the maximum temperature 

gradient on each curve joining the thermal center of the body t o  surface 

points where the temperature equals e,(z) 

e x i s t  where the temperature gradient reaches a maximum and this point is 

cer tainly located within the body. 

exactly or  less, a point must 

If we draw thermal current l i nes  from 

the center of the body t o  the surface points mentioned then on each of such 

l ines ,  i t s  maximum temperature gradient will be i t s  rmxinrUm heat  flow. 

The equation of the curve formed from such points of maximum heat flow 

was derived above [see (19)). 

It i s  understandable tha t  a point from the system (12) l i e s  on the curve 

(19) corresponding t o  the B i  value. 

The equation of the curve of the maximum 

of a rectangle i n  the regular region stage is: 

lVQl f o r  the temperature f i e l d  

(31) 2cot 2 "1 cot 2 tan 2 hq tan 2 p2r = COt41Ll tan CLl+ + cot 4 p2tan 2 CL*? 2 

8 
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In the square case, the equation of the curve of heat f l o w  maximums is 

s inpl i f ied  considerably: 

(32) 2tan 2 CLS tan 2 q = tan 2 cL5 + tan 2 cLq 

These curves are shown on figure 1 f o r  the B i  = 1.5, B i  = a, and 

B i  = 3 values. 

square. The l i nea r  dimensions of the curves incrGase as  B i  decreases 

according t o  the law: 

It is easy t o  note that these curves are  homothetic fm  a 

of 

Figure 1 Figure 2 
1 - B i t 1 . 5 ;  2 - B i = 3 ; 3 - B i - 0 0  1 - BiV 3: 1.11 j 2 - B% = 2 j 

3 - B h - m  

The displacement of t he  maxim heat flow values t o  the body center is 

It is  under- 

l ine .  The 

notable here as the in tens i ty  of the heat exchange increases. 

standable tha t  t h i s  approximation is  bounded by the B% = 00 

curves, located near the rectangle vertex, correspond to  the l e s se r  values 

of B % .  

Finally, for BiV value determined from (31) when 5 = 7 = 1 : 

. 
b 
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(34) 2 2 
2 2 = cot c"1 + cot p 

the line of maxirm;ua heat flow passes only +&rough one point of the rectangle - 
through its vertex. 

For a square, % = p2 = c1 and from ( 3 k )  and (22) there is obtained that  

f o r  Ei = that the Line of greatest  heat flow passes throlagh fts vertc:xe v 4  
For a rectangle with the Es = 4.24 cr i ter ion,  the appropriate value is 

J3% 3: 0-83 e 

January, 1954 
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